Renoprotection From Diabetic Complications in OVE Transgenic Mice by Endothelial Cell Specific Overexpression of Metallothionein: A TEM Stereological Analysis

نویسندگان

  • Edward C. Carlson
  • Jennifer M. Chhoun
  • Bryon D. Grove
  • Donna I. Laturnus
  • Shirong Zheng
  • Paul N. Epstein
  • Yi Tan
چکیده

We previously demonstrated that OVE transgenic diabetic mice are susceptible to chronic complications of diabetic nephropathy (DN) including substantial oxidative damage to the renal glomerular filtration barrier (GFB). Importantly, the damage was mitigated significantly by overexpression of the powerful antioxidant, metallothionein (MT) in podocytes. To test our hypothesis that GFB damage in OVE mice is the result of endothelial oxidative insult, a new JTMT transgenic mouse was designed in which MT overexpression was targeted specifically to endothelial cells. At 60 days of age, JTMT mice were crossed with age-matched OVE diabetic mice to produce bi-transgenic OVE-JTMT diabetic progeny that carried the endothelial targeted JTMT transgene. Renal tissues from the OVE-JTMT progeny were examined by unbiased TEM stereometry for possible GFB damage and other alterations from chronic complications of DN. In 150 day-old OVE-JTMT mice, blood glucose and HbA1c were indistinguishable from age-matched OVE mice. However, endothelial-specific MT overexpression in OVE-JTMT mice mitigated several DN complications including significantly increased non-fenestrated glomerular endothelial area, and elimination of glomerular basement membrane thickening. Significant renoprotection was also observed outside of endothelial cells, including reduced podocyte effacement, and increased podocyte and total glomerular cell densities. Moreover, when compared to OVE diabetic animals, OVE-JTMT mice showed significant mitigation of nephromegaly, glomerular hypertrophy, increased mesangial cell numbers and increased total glomerular cell numbers. These results confirm the importance of oxidative stress to glomerular damage in DN, and show the central role of endothelial cell injury to the pathogenesis of chronic complications of diabetes. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:560-576, 2017. © 2016 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Podocyte-specific overexpression of the antioxidant metallothionein reduces diabetic nephropathy.

Podocytes are critical components of the selective filtration barrier of the glomerulus and are susceptible to oxidative damage. For investigation of the role of oxidative stress and podocyte damage in diabetic nephropathy, transgenic mice that overexpress the antioxidant protein metallothionein (MT) specifically in podocytes (Nmt mice) were produced. MT expression was increased six- and 18-fol...

متن کامل

Overexpression of metallothionein reduces diabetic cardiomyopathy.

Many diabetic patients suffer from cardiomyopathy, even in the absence of vascular disease. This diabetic cardiomyopathy predisposes patients to heart failure and mortality from myocardial infarction. Evidence from animal models suggests that reactive oxygen species play an important role in the development of diabetic cardiomyopathy. Our laboratory previously developed a transgenic mouse model...

متن کامل

O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAc...

متن کامل

Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury.

Oxidative stress is involved in the pathogenesis of diabetes and its cardiovascular complications. Metallothionein (MT), a stress-response protein, is significantly increased in the liver and kidney of diabetic animals. We examined whether diabetes also induces cardiac MT synthesis through oxidative damage and whether MT overexpression protects the heart from injury. Diabetes was induced in mic...

متن کامل

Microphthalmia, persistent hyperplastic hyaloid vasculature and lens anomalies following overexpression of VEGF-A188 from the αA-crystallin promoter

PURPOSE During growth of the embryonic eye, dose- and site-specific expression of heparin-binding growth factors is critical for the formation of an appropriate vascular supply. Overexpression of vascular endothelial growth factor-A(188) (VEGF-A(188)), a strongly heparin-binding, endothelial-specific mitogen, leads to severe disturbance of vascular and overall ocular morphology. This study aime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 300  شماره 

صفحات  -

تاریخ انتشار 2017